
Development of a CAN
Slave Module with SystemC

Igor Sachs
Shang Qihua

Agenda

• 0. Motivation
• 1. Introduction to the CAN-Bus

– 1.1 The CAN Message Format (Frame)
– 1.2 Bus Arbitration
– 1.3 Bit Stuffing

• 2. Development of the Slave Module
– 2.1 The architecture of the Module
– 2.2 The Finite State Machine (FSM)
– 2.3 Problems

• 3. Presentation of the Hardware
• 4. Conclusion
• 5. Questions

Motivation

• The Controller Area Network (CAN) is a Fieldbus which has realtime
capabilities and is mainly used in the automotive industry.

• The so-called Multimaster Bus was developed at Bosch in 1981 and
is today the de-facto standard within Car-electronics.

• The aim of our project was to design a Slave module for the CAN
Bus using the HDL SystemC and implement it into an Xilinx
Spartan-2 FPGA

CAN
Slave

CAN
Slave

. . .

CAN-Bus
RTRT

CAN
Controller

Wiring Harness Yesterday (VW Beetle 1950)

Source: Decomsys

Wiring Harness Today (VW Phaeton)

Source: Decomsys

The CAN Message Format

Source: Microchip Technology Inc.

SOF: 1 dominant bit (0) to indicate the beginning of a new message

Arbitration: 11 bit identifier of the source of the message (priority) + RTR

Control: 6 bits to identify the length of the data

Data: Data to be transmitted (payload)

CRC: Cyclic Redundancy Check (bit errors)

• Every datagram within the CAN Bus consists of a number of bits, which
are divided into different fields.

Bus Arbitration

• To avoid data collisions, CAN performs a bitwise and non-
destructive arbitration on the bus

• Wired AND configuration:
- 0-level: dominant level
- 1-level: recessive level

• The lower the value of the identifier, the higher the priority of the frame

• Whenever the bus is free (recessive level), any station can start to
transmit data. => Multimaster functionality

Bus Arbitration

2 Nodes writing to the bus:

Node 1

Node 2

Bus

The dominant
zero of Slave 2
is written on the

bus

Listen only

Bit Stuffing

• Whenever 5 consecutive zeros or ones have been detected, an
inverted stuff-bit has to be inserted into the bitstream

1 2 3 4 5 6 …

1 2 3 4 5 6 …

Additional stuff bit

• In order to enable synchronisation of the CAN Modules within the
frame, there has to be some level-transitions of the data of the frame.
To ensure this, if it is naturally not the case, Bit Stuffing has to be applied

Special Example of Bit Stuffing

• Transform the Bits stream 11111 00000 to the bus.

stuff bit

0000011111

1000011111 0 0

stuff bit

Development of the CAN Slave Module

Analysis Project Block Diagram FSM Design

SystemCVerilogHardware
Implementation

The Finite State Machine (FSM)

FSM:

ELSE

RX = 1 & RTR = 0

IDLE

TRANSMITTING

RECEIVING

ARBITRATION

RX = 0

ELSE

RESET

BIT
STUFFING

BITSTUFF = 1

SAMPLES = 7

ELSE ELSE

BIT
DESTUFFING

BITDESTUFF = 1

SAMPLES = 7

RTR = 1

STARTING

SAMPLES = 7 EOF = 1

RX = TX

RX != TX

Architecture of the CAN Bus

FPGA

Can Controller

CAN-BUS

Can slave

SN75176A
Transceiver

(2)

TX

RX SN75176A
Transceiver

(1)TX

RX 82C2008051
Microcontroller

TX

B(7,27)

A(2,31)

B

CAN-LCAN-H

A

120Ω

120Ω

RX

Vcc

GNDGND

Vcc

GND

TX

RX

RE

D

Interface between CAN Master and Salve

Hardware of the Candy (Can Master)

Stream from the CAN Master

Problems

• Bit (de-) stuffing: extraction and insertion of stuff-bits
according to the CAN Protocol, including “special” stuff-bits

• Termination and connection of bus: Finding out the correct
termination, wiring and connections of the bus

• Timing/synchronization: keep the different Slaves synchronous

• Clock: elaborate the correct frequencies

• SystemC -> Modelsim -> Xilinx
= 3 different!!! Behaviors + cumbersome

development steps (no IDE, but several different tools)

Presentation of Hardware

Conclusion

• CAN is a very mighty Bus, which uses its bandwidth efficiently and the
access to the Bus is organized according to the priorities of the individual
modules.

• The successor of the CAN Bus will be Flexray, which has in addition Time-
and Frequency-Mux capabilities. But CAN will coexist for at least the next
one or two decades.

• The fieldbus has a guaranteed message latency (priorities through identifiers).
Therefore it is very suitable for applications were real-time capabilities
are needed.

Questions

Many thanks to:
Prof. J. Reichard
Prof. B. Schwarz
Dipl.-Ing. D. Palme
J. Pflüger

Any questions left ?

References

• Decomsys Presentation on Flexray from 08.12.05 at HAW, obtained from Prof. B.
Schwarz

• Stand-Alone CAN Controller With SPI Interface, Microchip Technology Inc.
• CAN Controller Area Network – Grundlagen und Praxis, Wolfhard Lawrenz
• Controller-Area-Network, Konrad Etschberger

